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Abstract

Analytical results for complex moduli of uniaxially fiber reinforced mat-
erials made of viscoelastic matrix and elastic fibers are reviewed. A general
method is established to predict complex moduli and loss tangents of viscoelas-
tic laminates made of uniaxially reinforced laminae. Application of results
is demonstrated by two examples of analysis of damping of structural vibrations:
Attenuation of vibrations in uniaxially reinforced Timoshenko beam and torsional

vibrations of laminated cylinder.
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1. Introduction

The ever increasing use of fiber composites for aero/space structures
requires the devélopment of rational methods for prediction of their rele-
vant properties within engineering accuracy.

In most current fiber composites the matrix is a polymer such as epoxy.
It is well known that such polymers exhibit the effect of vibration damping.
Therefore such damping effects will also occur in composites in which the
matrix is polymeric. Since aero/épace structures are subjected to severe
vibrational environment and since vibration damping is beneficial, the
quantitative prediction of such damping is of considerable engineering imp-
ortance.

It is of interest to emphasize the unique combination of desirable pro-
perties which are exhibited by fiber composites: Superior strength and
stiffness,ilowfweight and vibration damping. No other materials seem to
possess this many advantages.

In order to handlg Fhe problem analytically, it is assumed that the
matrix is linearly viscoelastic. Its dynamic viscoelastic properties can
then be characterized in terms of the usual complex moduli of viscoelasticity
which are assumed to be known on the basis of experimentsn The fibers are
represented as linear elastic. The composite with such constituents behaves
macroscopically as a linear viscoelastic body which is chafacterized by

effective complex moduli. There arise three classes of important investi-

gation:
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(a) Prediction of effective complex moduli of a uniakially reinforced
material on fhe basis of matrix complex moduli; fiber elastic moduli and in-
ternal geometrical parameters such as constituent volume fractions, fiber
shapes, etc. |

(b) Prediction of the effective complek_moduli of a laminate, whose
laminae are composed of uniaxially reinforced material, on the basis of the
uniaxial material effective complex moduli found in (a) and the laminate
internal geometry.

(c) Viscoelastic vibration analysis of structures made of fiber compo-
sites.

These different kinds of problems will be discussed consecutively.
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2. Complex Moduli of Uniaxially Fiber Reinforced Materials

A general theory of prediction of effective complex moduli of composites
with linear viscoelastic constituents has been given previously [1], [2], [3].
It will here suffice to discuss without proof some results which are pertinent
for the present investigation.

Let the local average strains and stresses in a composite be of oscillatory

nature. Thus:

£, =g, o't
1] 1]
(2.1)
G.. =5, etut
1) 1}

where overbars denote average, 1 = V-1, w is frequency, t is time and latin
subscripts range over 1, 2, 3. The effective complex moduli E;jkz of a generally

anisotropic composite are defined by the relation:

~ ~% -~
85 = Cijkﬁclw)ekl (a)
(2.2)
g _ ~%R *] .
Ciyrg (W) = Ciypp@) + 1 Cilhyp (W) (b)

where superscripts R and I denote real and imaginary parts respectively.
The assumption is made that the fiber reinforced material under considera-
tion is macroscopically transversely isotropic with respect to fiber direction.

Then (2.2a) assumes the form:
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Ci2 €11 + C23 €22 + C22 €33

. (2.3)
2Cyy €12

(C22 -’523)523

]

2Cyy €31

where x; is in fiber direction and X2, x3 are in the transverse plane, Fig. 1.

In another notation, the complex moduli in (2.3) are written:

511
Ciz
Ca2z
C23
Eau

Here k is a transverse

modulus in Xz, x3 plane and

=i

=2

=k + Gy (2.4)
=k-1T

=GA

~

complex bulk modulus, G, - transverse complex shear

T

Gy - axial complex shear modulus in planes contain-

ing fiber direction x;. The physical interpretation of n and % is here of

little interest.

Inversion of (2.3) is written in the form:
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2Gp
~ 823
€ = =
23 ZGT
~ G313
€ = e
31 ZCA

where gA and ﬁT are complex Youngs' moduli in axial (fiber) direction and
transverse (to fiber) direction, respectively, and GA and GT are associated
complex Poisson's ratios.

Establishment of analytical eXpressions for the various effective
complex moduli listed above in terms of matrix complex moduli, fiber elastic
moduli and phase geometry is based on a correspondence principle [1], [2]
which states: The»gffective complex moduli of a viscoelastic composite are
obtained by replacement of phase elastic moduli by phase complex moduli
of a composite with identical phase geometry.

In the usual fiber reinforced materials the following conditions are
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usually fulfilled with sufficient accuracy
(a) Fibers are by an order of magnitude stiffer than matrix
(b) The matrix is isotropic and is viscoelastic in shear only

(c) The matrix shear loss tangent is not larger than 0.1. Thus:

tan 62 = < 0.1 (2.6)

EQFUI EQH

Under these conditions the following results have been shown [3]
to be valid.

(d) The imaginary parts of the effective complex moduli, n, i, E,
EA are much smaller than the imaginary parts of the effective shear
moduli‘éA, ET’ and of ETa

(e) To obtain real parts of all effective complex moduli it is
merely necessary to take corresponding expressions for effective elastic
elastic moduli and to replace in them matrix elastic moduli by real
parté of matrix complex moduli.

Some simple general results which are valid under the conditions

listed above will now be given:

EA(iw) = Em(iw) V¥ E,f Ve
R R
EA(w) = Em(w) Vi * Ef Ve
I = gl (2.7)
EA(w) = Em(w) Vo
Ei tanég n
tan GE = = g << tan GE

R
EA 1+ Efvf/Emvm




Here m and f denote matrix and fibers, respectively, and v stands for
volume fraction, tan GE is the loss tangent for uniaxial stressing in fiber
direction while tan 62 is the corresponding loss tangent for the isotropic
matrix.

For axial shear

- - 1+ vf
GA(1w) = Gm(lw) T
f
1 +v
R _ AR f
Ca(w) = G, 7= Ve
1 +v (2.8)
GI(w) - GI f
A m1l - vf
tan 6. = tan &"
GA G
For transverse shear
I~ _R mn
GT = GT tan GG
(2.9)
m
tan GGT = tan GG

An expression for G$ has been given in [2], [3]. Results for other

complex moduli may also be found in these references.
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3. ‘Complex Moduli of Laminates

The laminates to be considered are composed of plane laminae of
uniaxially fiber reinforced materials, the direction of reinforcement
being different in each lamina. The laminate is referred to a fixed
coordinate system x1, X2, x3 where xi,x2 are in the plane of the lami-
nae and X3 is normal to it, Fig. 2. The nth iamina in the laminate is
referred to a material system of axes Xﬂ(n), xz(n), X3 where xlcn) is
normal to the fibers and x3; coincides with the laminate x3. The posi-

(n) xz(n)

tion of the x3 . system is defined with respect to the x3, X2

system by the reinforcement angle

0, = ¥ (™, x) (3.1

Fundamental assumptions of fiber composite laminate theory are: (a) Any
lamina can be replaced by a homogenous material whose properties are the
effective properties of the uniaxial FRM of which the lamina is made.
(b) The laminae are in statesof plane stress.

First an elastic laminate will be considered. The plane stress-strain

relations of a lamina referred to its material system of axes xx(n), X2(n)
are then:
v
1
mgm_?mgm_éwcm
A A
v
Ezz(n):w Eé-dzz(n) + %-022(n) (3.2)
A T
e, M) _ g1, M
12 5C
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where:
EA - axial Youngs modulus (in fiber direction
Vp - associated axial Poisson's ratio
ET - transverse Youngs modulus (normal to fib
GA - axial shear modulus (in xlcn), xz(n)' pl
The inverse of (3.2) is:
Oxx(n) = Ci1 ell(n)
022(n) = Cy2 611(n)
012(n) = 2Cyy €32
where
Cii =Cyy11 =
1 -
Ci2 = Ciy22 =
1
C22 = Cz222 =
1 -

Cuuw = C1212 = GA

)

ers)

ane)

+ Ci2 €22

+ C22 €22

(n)

(n)

(3.3)

(3.4)
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In terms of the four indek moduli in (3.4), (3.3) can be written

compactly as:

) ) (n)
oaB =C aBYS eyd (3.5)

where here and from now on Greck indices range over 1, 2.

For the sake of simplicity there will be considered the special
group of laminates in which the application of membrane force NaB in the
plane of the laminate does mnot induce bending or torsion in the laminae.
The most important kind of laminate which fuifills this requirement is a
symmetric laminate. Such a laminate has the property that its middle
plane is a plane of symmetry for the geometry and elastic moduli of the
laminate. The laminate is thus composed of laminae pairs in each of
which the laminae‘are of same thickness, are symmetrically located with
respect to the miédle plane and have the same elastic properties with
respect to the xi, Xz system.

The last condition is most commonly fulfilled by laminae made of
jdentical material and same reinforcement angle en (3.1), in each pair.
The elastic stress-strain relation of such a laminate is given by

5 Y _ o ¢ (a)
aB h ~ “oByS Y6

(3.6)
N
* (n)
caBYG L c

T Mgyt O
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where

-aB - applied average plane stress

EaB - average strain
h - laminate thickness

* . o o o
caBY5 - effective elastic moduli of laminate
. th .

tn - thickness of n~ lamina
N - number of laminae

(n)CmbS - the laminae elastic moduli (3.4) transformed to the xi, X2

system of axes.

For establishment of the result (3.6) see e,g. [4]. Proof that (3.6)
is based on an elasticity solution which is ekact in the Saint Venant sense
for a laminate whose thickness is small compared to its plane dimensions
has been given by B.W. Rosen (unpublished).

Let it be now assumed that the laminate is viscoelastic but remains
symmetric as described above. The laminate is subjected to oscillatory

membrane loads

Nyg = 'ﬁas et (3.7)

The average stresses associated with (3.7) are then:

iwt

NaB NaB otWt 2 e
T CaB (3.8)

S s

The strain response of the laminate is
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- _ = 1wt
EaB = EaB e (3.9)

The relation between aaB and EaB is written:

T =y ¥
GaB = C 5 (1w) eY6 (3.10)

where E;BY5 are the effective complex moduli of the laminate.
It follows by the general correspondence principle of [1] which was

quoted above that E&BYﬁ can be expressed in form (3.6b). Thus:

N
* - (n)z
CaBYG (ww) -nz CaByG (lw) tn/h (3.11)

1

(n)x
CaBY6

follows: In the material axes Xl(n), XZ(H) of the nth lamina the stresses

The single laminae complex moduli in (3.11) are interpreted as

and strains are:

() _ . () wt
908 =340 e

(3.12)
(m) _

~ (n) _wt
eaB = eaB e

(M) and & .M 5 (3.12) is of type (3.3-3.4).

af

The relation between 8aB

Thus:
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~ (M) _xMm ~ ()
o = C £
0B aBys ~y$ (3.13)
Cii11 = 611 = A
Ep _
1-:—\)2
Ep A
J.E
C = =
1122 = C12 ET (3.14)
1 - =~ ¥2
Ey, A
E
C2222 = Ca2 = g
1 - oL 2
Ep A
Ci212 = Cyy = GA

where EA’ ET’ GA and EA are the effective complex moduli of the uniaxial
material which were discussed in par. 2.

If the complex stress strain relation (3.13) is transformed to the

laminate axes X3, X2 it assumes the form:

Mz _ (m)g ()¢
S8 = Cagys  Eys (3.15)

. . (n)x .
This defines the CGBYG in (3.11).
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By tensor transformation:
nj> ~
( )01111 = (n)cll

= Cncos"en + szsin"en +

P 2p s 2 ~ 2n 5.2
+ 2 o + 0 3]
Ci2co0s 6n51n On 4Cyycos ens1n n

(n)axxzz = (n)§12 = (C1y + Ezz)coszensinzen +
+ 61z(cos“9n + sin“en) - 4Euuc0526nsin26n
(n)Ezzzz = (n)Ezz = E11$inh6n + Ezzcoshen +

~ 2 .2 ~ 2 < 2
+ 2C12c0s“6_sin + 4C44c05“B sin‘d
12 " en Wy n n

(3.16)
(n)61112 = (H)El“ = - Ellcos36nsin en +

~ <. 3 -~ 3 s <. 3
+ + 6 - +
szcosen51n en Ci2(cos 9n51n n cosen51n Gn)

~ 3 s : .03
+ 2Cuy (cos en51n6n - cosens1n Gn)

n ~ n ~ -~ R
( )C2212= ( )Czu = - CIicoan51n36n +
~ 3 . ~ <. 3 3 .
+ Caac0 in6_ + cosB_sin®6_ - cos®H_sinb +
22C0S ens n Ci2(cos h n-© n n)

et « 3 3 R
+ 2Cuu(cosen51n 6, - cos 6 sinfp)
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(n)EIZIZ = MG, = (Cyy + Caz)cos?6_sin?B_ -
g n n (3.16

- 2C 20 oin? - 2 s 24 42 cont'd)
2C;c0s 9n51n Gn + Cuy (cos en - sin Bn)

The preceding developments together with the results for complex modu-
1i of uniaxially fiber reinforced materials define the computation methods
of the effective complex moduli of symmetric laminates as expressed by (3,11);

For practical purposes it is frequently necéssary to compute the effec-
tive complex compliances which are defined as the inverse of’.(z.,ll)o In

matrix notation:

~ ~

Cr « S*=J (3.17)

where S* denotes the effective complex compliance matrix and J is the unit

matrix. Separation of (3.17) into real and imaginary parts yields

© 8= (a)

(3.18)

°
9]
#
Laa}
+
e
*
[
<
2]
*
[}
(o]

Great facilitation is achieved if it is noted that in view of (2.6) the
second term in the left side of (3.18a). can be neglected with respect to

the first. It then follows:

o §_*R =J (a)

(3.19)

S*"=-8*" ° C ° §* (b)




Thus, once C*R and C"I have been computed from (3.11), (3.19) define the
= > p

effective complex compliance matrix by simple real matrix operations.

Another important simplification is obtained if in the laminate

to each pair with reinforcement angle en and thickness-tn corresponds

another pair with reinforcement -6, and same thickness t,. It is then

easily realized by the form of (3.16) that all contributions to (3.11)

of terms with odd powers of cosen and sinen cancel mutually. Thus in

this event the effective complex moduli matrix

pmne

~d

Ciina
Sk

C* = | Ciliz22

0

ey
Cri22
3
C2222

0

0

0

Tk
Ci212

—

et 3
Cis
13
Ci2

0

(3.11) has the form

et
Ciz
e
C22

0

—
0

0

g
Ciy

(3.20)

and so the laminate is macroscopically orthotropic. The situation just

described is of frequent practical occurrence. For example a symmetric

laminate with laminae reinforcement in en = 0,90°, + 45° directions.




4. Structural Applications

4.1 Free flexural vibrations of a
fiber reinforced beam

As a first example there is considered the case of free flexural vibrations
of a simply supported beam which is uniaxially reinforced in beam axis direction.
The purpose of the investigation is to compare vibration damping due to matrix
viscoelasticity on the basis of the usual theory which neglects the effect of
shear and on the basis of the more refined Timoshenko theory which takes into ac-
count shear as well as rotatory inertia. For isotropic materials, in which the
complex Young's modulus loss taﬁgent and the complex sﬁear modulus loss tangent
are of same order, the added effect of shear and rotatory inertia is small for
vibration modes of low order and for long beams. In the present case, however,
where the axial Young's modulus loss tangent is by an order of magnitude.smaller
than that of the axial shear modulus (section 2) the situation is quite'different
as will be shoﬁn below: |

Considering only the effect of flexure the differential equafion of the
freely vibrating beam is:

4§ 92w o%w

¢ mw * gz = 0 (a)

(4.1)

I
-

2 A (b)
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where:

EA complex axial Young's modulus

I - moment of inertia
A - area of cross section
p - density

Boundary conditions of free support are:

2
W, g_),(_vz_v_= o X = 0,8 (4.2)

Conventional viscoelastic vibrations analysis shows that the modes

of vibration are given by

_ .. NTX 1 R R
wn(x,t) = An51n T exp(~7-wntan6Et) exp(lwnt)
4.3
where An is an arbitrary constant and
R
R < nzwz.:'EAI (a)
n 22 | pA
(4.4)
tanéEm ‘
tanGE = —-———Ef—vf- : (b)
1+
‘ ERv
mm

Equ. (4.4b) is a repetition of (2.7d). The results are valid for small

enough loss tangents, of order (2.6). The attenuation Ny is defined by

h
n, = 7—-tan6E (4.5)
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Next the same beam is considered in Timoshenko fashion, with shear
and rotatory inertia. By the correspondence principle for viscoelastic

vibrations [5], the elastic Timoshenko beam equation [6] transforms into

~

kE b 2 ab
2 3% %w A, 3'w _ kr?p d'w _
Aty o T 1+ EX—Q 5%25eT N 5t = 0 (4.6)

2

where c“ is given by (4.1b), EA is the axial complex shear modulus (2.8a),

k is the strength of materials shear shape factor of the section and
r? = I/A.
Equ. (4.6) with boundary conditions of simple support admits a solution

of the form, [6]:

_ ..nmx it '
wn(x,t) = An51n —Ef-e n 4.7

where ﬁn is a solution of the complex frequency equation:

~

kE 2
2, 4_ 2.2 _Ayn 2, krTp oaw
cfa *- [l+a *r?(1 + z ]&n + = mn =0 (a)
(4.8)
- om
o= 7 (b)
The solution of (4.8) is the complex ''frequency"
B =08 + 10l (4.9)
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In the case of small loss tangents of order (2.6) it can be shown by

straightforward calculations that:

RZ 2.2 kﬁi R2  kr?p . R*
¢ o, -[1+un re(l + Eﬁ—-)]wn + GR 6, = 0
A A
R
2 E, I
K A
p

I_
& =

(a)

(b)

(4.10)

(4.11)

R R, 2 ,R 22 R, R R* & ,AR%? 2, 2.R, R
&n (wn kr p/GA-an T kEA/GA)tanéG—(c o /wn o kr EA/GA) tan6E

Z RZ.__, , R 2 2 R, R
an kr p/GA-[lwn Y (1+kEA/GA)]

It is seen that (4.10) is the frequency equation of an elastic

Timoshenko beam in terms of real parts of complex moduli.

Its validity is

based on the usual additional assumption that real parts of complex moduli

vary sufficiently slowly with frequency. Once &ﬁ has been computed from

(4.10), G; can be computed from (4.11).

A mostly sufficient accurate approximation for Gﬁ is:

R. R , 1 .. kERA
&n =co [1 - 5 0T 1+ -1
Gy

(4.12)

For slender beams and low modes the first term in each of numerator

and denominator of (4.11) is insignificant relative to the others. Thus:
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6!z
n

2_2,-R, R RZ , ,.R?
(an T kEA/GA)tanG ¢t (c o, /wn )tamSE

-~ R (4.13)
1+ o °r 1+ kEA/GA)
Substitution of (4.9) into (4.7) results in:
nmx -&i 1mﬁt
wn(x,t) = An51n — ¢ e - (4.14)
where the attenuation is now:
A= ok (4.15)
n n

To obtain an idea of the relative importance of damping due to shear
and rotatory inertia, the attenuations (4.5) and (4.15) have been compared
for the following case: Beam of rectangular section

2 = 40.0" h = 2.0

Material: Boron fibers, Epoxy matrix

E_=60x10°psi, E \=.5x10°psi, G_‘=.185x10°psi
f P m P m

tanGEm = tand " = tand_ = .05
G m

E\ = 30.25 x 10°%si G

R

A = 544 x 10°psi
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tandm

tamSE = tan&G = tandm

p=1.78 x 10"* gb(mass)/in®

It has been assumed for simplicity that real parts of complex moduli and
loss tangents are frequency independent.
For the first mode:
wlR = 1480 1/sec
} Bending only
n = .308 1/sec
G1R = 1380 1/sec
} Timoshenko beam
iy = 4.44 1/sec
It is seen that shear and rotatory inertia have a very small ‘effect on the
frequency but increase the attenuation by a factor of 14.4. This example

shows that for damping of viscoelastic fiber reinforced beams shear and rota-

tory inertia are of major importance.

4,2 Forced torsional vibrations of

laminated cylinder.

A thin walled cylinder which is laminated through its thickness is built

in at one edge and is subjected to a sinuscidal forcingvtorque at its

other edge. Each lamina is uniaxially reinforced and has the same material
properties with respect to its material axes. The laminate is symmetric
with following lamination scheme:

reinforcement in generator direction (axial) - volume fraction v
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reinforcement in + 6 direction - volume fraction Vg
reinforcement in - 6 direction - volume fraction V.o

Vg =V g (4.16)

For the purpose of analysis of torsional vibrations, the only effective

~

laminate property needed is the effective complex shear modulus Gi». It
follows from (3.11) that:

~

~ % &* ~ ~
(4.17)

+(-e)61212t_e/h

where t is the sum of the thickness of the 6=0 laminae, t.o and t g - the
sums of the thicknesses of the +6 and -6 laminae, respectively.

Now:

to/h =V, (4.18)

t+9/h = t_e/h =V

and from the last of (3.16)

(+6)C1212 = (_e)CIZIZ = (e)C1212 = (e)Cuu (4.19)

Introduction of (4.18-19) into (4.17) yields

~ ~ ~
Giz2 = (OJCEWVO + ZCG)CM.VB (4.20)

By the last of (3.16) and from (2.4), (4.20) assumes the form:

~

"'*_. 1.~ - . 2 ~
Giz = Gyv_ + [i{n+E~2£+GT)51n 20+2G

2
A ACOS“201Ve g a1y




- 25 -

It has been mentioned before (Section 2) that the imaginary parts of

ﬁ,i and k can be neglected with respect to the imaginary parts of ET and

~

GA for the usual fiber reinforced material. Consequently, the separation of

(4.21) into real and imaginary parts assumes the form:

*
Glg = Giv0 + [%{nR+kR-22R+G¥)sin229 + 2G§c05226]ve (a)
(4.22)
*
Giz = Gpv_ + (3Grsin®2y + 2G,cos?20)vg (b)

In the usual fiber reinforced materials generally

1 R,R_,,R R R

E{n +k -2 +GT) > 2GA
1 .1 I
E'G < ZGA

It follows that the shear loss tangent of the laminate

*1
Gi2

tand* = E;ﬁ- (4«23)
12

has a maximum for 6=0 and decreases monotonically to a minimum for 6=45°.

On the other hand shear strength is smallest for 6=0 and increases monoéoni-
cally to a maximum for 0=45°. Therefore, in design for maximum damping it

is necessary fo choose the smallest angle 6 which complies with allowable shear
stress.

Let the forcing torque at the edge x;=% be represented as

M = M sinwt
o}
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and let the amplitude of angle of twist ¢ at x;=£ be written Amp (¢).

By standard theory of viscoelastic vibrations with small loss tangents

[2,3]

oM \/%inZ(Za)+sinh2(2s)

4.24)
Amp(9) = ¢
JG§§w cos(2a) + cosh (2B)
where
R
C2 = GiZC
pJ
—
c
B = ws ™
2c
p - density
C - Torsional constant of section
J -

Polar moment of inertia of section
GfE - equ. (4.22a) |
8* - equ. (4.23)

Numerical analysis has been carried out for a laminate composed of boron/
epoxy laminae with both constituent volume fréctions equal to .5. Laminae
fractional volumes in laminate are
v = .6 Voo = 2 with 0 = 22.50°

Analysis has been pefformed in following stages:

(a) Experimental results for epoxy matrix complex shear modulus and loss
tangent as a function of frequency have been described by an empirical
formula.

(b) This formula together with elastic properties of fibers have been used

to compute effective complex moduli of the uniaxially reinforced laminae,




as a function of frequency. For this purpose results (2.7-9) and other

formulae given in [2,3] have been used.

(¢) With the aid of single laminae properties the real and imaginary parts
(4.22) of the effective complex shear modulus é{z have been computed as
function of frequency. It should be noted that in the present applica-
tion 1 indicates generator direction of cylinder, and 2 the direction
normal to generator and tangent to section contour.

(d) The results for G§§ and ng have been used to compute (4.24) as a func-
tion of frequency w.

A plot of such results is shown in Fig. 3 for a cylinder of length 2=100 in.
and thin walled circular section. It is seen that the first resomance peak is
very significant and may be regarded as an elastic resonance. However; the
damping of the viscoelastic matrix becomes more effective with higher order
resonances, the fourth one being considerably reduced.

5. Conclusion

It has been shown that complex moduli of uniaxially fiber reinforced
materials and of laminates of such materials, consisting of viscoelastic matrix
and elastic fibers can be computed in straight forward fashion. The results
can be used for analysis of structural vibrations on the basis of available
Atheoryo

Two structural examples have been given tc assess the significance of
vibration damping.

Many more other interesting applications can be analyzed by the theory

which has been presented.
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